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Abstract. In recent years, the Retrieval-Augmented Generation (RAG)
paradigm has become central to improving the reliability of systems
based on Large Language Models (LLMs), as it grounds generation in
evidence from external knowledge sources. However, much of the liter-
ature focuses almost exclusively on retrieval effectiveness, overlooking
a crucial requirement in educational and professional settings: content
confidentiality. The absence of mechanisms ensuring that only autho-
rized documents are returned to the user risks limiting adoption in real
scenarios. We present RetrievEM, a confidentiality-aware RAG frame-
work validated on the BEIR/FiQA benchmark. Our approach pursues
a dual objective: (i) improving retrieval by combining heterogeneous
signals from different components, and (ii) ensuring that returned con-
tent complies with user-specific access constraints. RetrievEM integrates
dense retrieval, reranking with cross-encoders, score-level fusion, and
access-aware persona generation. Experimental results show that fusion
yields substantial gains over individual components. Considering the lim-
ited accessible documents and RAG-related selection bias, we introduce
Backfill, a post-processing algorithm that increases the search depth by
exploring beyond the initial top-k results, preserving confidentiality with-
out sacrificing retrieval utility. Overall, our RAG system can deliver ped-
agogically useful content while respecting access policies, demonstrating
that effectiveness and confidentiality can coexist.

Keywords: Retrieval-Augmented Generation - Confidential Artificial
Intelligence - Educational Technology
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1 Introduction

Within modern information systems [3,11,6,7,2], Information Retrieval (IR)
plays a key role in enabling users to access documents relevant to their queries.
However, IR typically requires the formulation of precise, keyword-based queries,
which can be challenging for non-technical users. Conversely, Large Language
Models (LLMs) - a class of Transformer-based models capable of understanding
and generating natural language - make information access more intuitive; yet
their responses are non-deterministic and not always predictable or verifiable.

The combination of these two paradigms has given rise to Retrieval-Augmented
Generation (RAG), which combines the retrieval precision with the generative
fluency of LLMs. RAG systems enhance factual grounding and reduce halluci-
nations by incorporating evidence retrieved from external sources.

A major challenge in applying RAG to educational contexts concerns confi-
dentiality: ensuring that information retrieval and generation processes comply
with access-control and privacy requirements, preventing the exposure of sensi-
tive materials to unauthorized users. For instance, a lecturer may use the sys-
tem to retrieve access confidential assessment rubrics or internal teaching notes,
whereas a student should only access publicly available learning materials. Sim-
ilarly, academic administrators might retrieve aggregated analytics on student
performance, while individual-level data should remain inaccessible. In financial
literacy education (the domain of our experiments) these confidentiality issues
become even more relevant, as educational resources may include proprietary
datasets, students’ financial scenarios, or graded assignments.

Developing a RAG system that is genuinely useful for education therefore
requires careful data governance: managing access to different knowledge sources,
protecting queries and responses in transit, and enforcing policies that prevent
information leaks across roles (e.g., teacher, student, tutor). These safeguards
ensure that the benefits of assistance do not come at the cost of data protection.

Despite the growing popularity of RAG in education, most studies have pri-
oritized retrieval accuracy or generative fluency over privacy-aware design. Early
works such as REALM [8] and RAG [10] established the paradigm of integrating
retrieval with generation, while more recent methods like EXSEARCH [13] ex-
plored adaptive retrieval mechanisms. However, none of them natively address
document confidentiality or access control, both crucial in learning environments.

Recent research has begun to address these limitations by proposing privacy-
preserving retrieval and secure RAG architectures. For example, Zeng et al. [18]
mitigate privacy risks using fully synthetic data in RAG pipelines, showing that
such corpora can preserve retrieval utility while preventing sensitive informa-
tion leakage. Chakraborty et al. [4] investigate Federated RAG, demonstrating
how decentralized retrieval allows collaboration across institutions without shar-
ing private data. Similarly, Cheng et al. [5] introduce RemoteRAG, a privacy-
preserving cloud service ensuring secure query handling and access-controlled
retrieval. Nonetheless, these privacy-oriented strategies have seldom been ap-
plied to educational systems, leaving open the question of how to design RAG
pipelines that are both effective and confidentiality-preserving.
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Fig. 1: RetrievEM architecture: high-level overview of core functional modules.

To explore this issue within a realistic domain, we focus on financial edu-
cation—an area where both content and learner data are sensitive. Financial
learning involves interpreting data-rich materials (e.g., market analyses, budget
simulations) while ensuring that student queries, learning progress, and personal
examples remain protected. As our reference dataset, we adopt the Financial
Question Answering (FiQA) corpus from the BEIR framework [17], which en-
ables controlled experimentation in a domain that mirrors authentic financial
reasoning tasks.

In this work, we make three main contributions: (i) we examine the role of
confidentiality in the design of RAG pipelines for educational support; (ii) we
demonstrate how FiQA can serve as a secure yet realistic corpus for exploring
confidentiality-aware RAG; and (iii) we outline learning scenarios and evaluation
strategies showing how such systems can enhance financial information literacy
while ensuring compliance with data protection requirements.

2 Methodology

In this section, we present the Confidentiality-aware architecture of RetrievEM
and the design choices that guide the subsequent modules. Our goal is to max-
imize retrieval and generation effectiveness while managing the trade-offs and
respecting access constraints, without resorting to fine-tuning base models.
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2.1 Data Preparation

RAG systems aid the generation of reliable content through the retrieval of
external knowledge. It is then crucial for such knowledge to be prepared before
being fed into our architecture. Datasets for question answering typically consist
of passages (documents to be retrieved), queries (user questions), and relevance
judgments (qrels) indicating which documents are relevant. We follow common
practices in the educational domain [15] and design a clear and reliable pipeline
to ensure content is appropriate, coherent, and confidentiality-compliant:

— Cleaning: we apply a textual cleaning step by removing redundant headers,
markup, extra spacing, and unwanted metadata.

— Chunking: we split passages into fixed-size segments with a 20% overlap
between windows, ensuring better context coverage during retrieval.

— Chunk Enrichment: we augment each textual chunk through additional meta-
data to enable more accurate and less noisy retrieval. Specifically, metadata,
such as title and summary, was generated with a compact LLM (Quens-
0.6B [16]) in zero-shot mode to keep the process lightweight. Metadata
also include the confidentiality levels associated with each document in the
dataset.

— Embedding: we employ text encoders to embed chunks and their respective
metadata into a latent representation. As the embedding process is crucial
for the retrieval pipeline, we explore different solutions and assess their per-
formance, focusing on state-of-the-art approaches.

— Ingestion: we use a vector database that supports large-scale approximate
nearest neighbor search (ANN) to enable the document retrieval through
a query. In particular, we relied on Qdrant?, but RetrievEM can be easily
adapted to any vector database. Embeddings are stored along with their
respective confidentiality level to enable runtime filtering and ensure results
respect access constraints and confidentiality policies.

2.2 Retrieval-Augmented Generation

RetrievEM builds on the steps of data preprocessing and ingestion in Qdrant, and
it can operate in two main modes. The first is the interactive mode, in which the
framework answers queries from students or lecturers with relevant content that
complies with confidentiality constraints. In this scenario, the pipeline is designed
to assign an access level to the user at runtime and manage the access policy
dynamically. This component is currently under development and represents the
natural evolution towards real-world system deployment.

The second is the wvalidation mode, which enables systematic offline testing
on benchmark queries. It is not common for corpora to provide confidentiality
metadata at the query level. In light of this, RetrieveEM integrates an additional
step of query enrichment that dynamically generates synthetic personas [14]. The
process generates personas with an associated access level L, linked to a query

3 https://qdrant.tech/
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q. Specifically, n, queries from the corpus are sampled according to a uniform
distribution and fed into an LLM (Quwen3-0.6B [16]) to generate n, personas.
The remaining queries are randomly assigned to these personas, simulating a
set of queries performed by distinct users. This strategy enables confidentiality-
aware analyses in setups lacking access-levels information.

Retrieval Stage Independently of the mode, RetrievEM integrates a query
decomposition process to increase the semantic coverage of input queries. Each
query q is converted into a set of sub-queries {qi}?qu, representing trajectories
aimed at exploring sub-aspects of the search space [9]. We leverage the in-context
learning ability of LLMs to perform this task by relying on the lightweight and
fast Qwen3-0.6. Fach generated sub-query g¢; is then transferred to the vec-
tor database, which retrieves k candidate documents via approximate nearest
neighbor (ANN) search. Although each retrieved document is associated with a
similarity score, such a score is conditioned by the respective sub-query used for
retrieval. Therefore, we employ reranking strategies to address the non-trivial
task of selecting the k candidate documents that maximize the relevance for the
initial query q.

Reranking Stage After dense retrieval, documents and queries are processed
through a Cross-Encoder Reranker (CE) that reassess the relevance of retrieved
documents. Unlike embedding-based similarity, the reranker jointly encodes the
pair (¢,d) (e.g., [CLS] q [SEP] d [SEP]), allowing it to capture more fine-
grained semantic distitions. For example, two documents on compound interest
may appear equivalent to the dense retriever, but the CE can recognize that
one contains only a generic definition while the other provides a step-by-step
explanation, resulting in more useful outputs in educational contexts. Although
computationally more expensive, this step yields rankings where the most rele-
vant and pedagogically rich documents receive more visibility and importance.

To integrate retriever and reranker signals, we adopt two strategies, namely
Linear Fusion (LF) and Reciprocal Rank Fusion (RRF). LF combines normalized
scores through a weighted average:

str(d | ¢ @) = (1—a)sdense(d | ) + ascr(d|q), «€0,1] (1)

« is a factor that balances the retriever’s and reranker’s impact, with a = 0
relying solely on the retriever and o = 1 solely on the reranker. a &~ 0.5 combines
breadth (maximized by the retriever) and precision (maximized by CE).

On the other hand, RRF merges rankings by positions rather than scores:

srrr(d | q) = Z - (2)

m € Dense, CE v T rm (d>

where Dense denotes the ANN retrieval, r,,,(d) is the position of document
d in method m’s ranking, and v is a smoothing constant (typically v = 60
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[1]) that prevents the top ranks from excessively dominating the result. This
approach boosts documents ranked highly by both models and provides a robust
compromise, even under different scoring scales. For instance, a document placed
2nd by the retriever and 3rd by the CE scores higher than one ranked 1st by
one model but 50th by the other.

Post-processing Stage After dense retrieval and reranking, the system applies
a post-processing stage to ensure that the final response is accurate, confidentiality-
aware, and pedagogically useful. The process unfolds in three steps.

First, a confidentiality filter ensures that retrieved documents comply with
user access policies. Each document has a confidentiality level A; and each
user /persona associated with the respective queries has an access level L,, with
the policy requiring L, > Ay. Hence, any document that is not compliant with
the confidentiality policy is filtered out and ignored in later steps. Second, the
authorized evidence chunks are synthesized into a coherent summary through an
LLM (Quwen3-0.6). For each sub-query g¢;, evidence chunks are aggregated into
a summarized evidence v;. In other words, the system combines and reorganizes
relevant fragments, avoiding redundancy and linking related concepts. From an
educational standpoint, this is equivalent to taking notes from multiple sources
and rephrasing them into a clear, linear explanation.

Third, the synthesized candidates undergo a re-scoring and selection process.
Each trajectory is defined as a (sub-query, evidence) pair 7; = [g;; v;], with [-;-]
the concatenation operator. This concatenated structure is used to compute a
new score by comparison with the query ¢, and, in validation scenarios, also to
a reference answer g. Formally, the score is defined as:

s(ri | a.9: ) = A-cos(e(i), e(q)) + (1—A)-cos(e(ri), e(g)),  (3)

where cos denotes cosine similarity, e the embedding operator, and A the trade-
off parameter. In evaluation and interactive settings without g, the score reduces
to s(;) = cos(e(r;),e(q)). The trajectory with the highest score is selected as
the basis for the answer, ensuring both relevance and didactic adequacy.

Finally, the selected evidence is passed to an LLM (Qwen3-0.6) in a struc-
tured prompt. At this stage, the model does not hallucinate content but gen-
erates a fluent explanation grounded in verified material. The resulting output
integrates accuracy (through retrieval and scoring), confidentiality (through ac-
cess control), and clarity (through synthesis and structured generation).

3 Experimental Results

In this section, we present and discuss the experimental results obtained with
RetrievEM, with the aim of validating the architectural choices and analysing the
extent to which the framework can improve retrieval quality while simultaneously
enforcing confidentiality constraints. Accordingly, this section is structured as
follows: we first describe the Experimental Setup, detailing the adopted dataset,
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the procedure for enriching it with confidentiality metadata and personas, and
the evaluation metrics. We then report the results of our experiments, discussing
key findings and aiming to answer the following research questions:

RQ1 How effective are fusion strategies compared to standard retrieval?
RQ2 What is the impact of the backfill safe-Aware mechanism?

3.1 Experimental Setup

Dataset To evaluate the performance of RetrievEM, we adopted the FiQA
dataset, which is part of the BEIR benchmark [17] and widely used in the liter-
ature for Financial Question Answering. F1iQA is characterized by its highly spe-
cialized domain (finance and economics), and provides not only a large document
corpus but also a set of queries and corresponding relevance judgments (grels). In
particular, the collection consists of 57,638 documents and 6,648 queries, making
it well-suited for evaluating IR systems. However, FiQA does not include confi-
dentiality levels for documents and users (i.e., queries). Therefore, we estimate
a confidentiality level A4 in a zero-shot setting using a pre-trained entailment
recognition classifier? to assess the logical relationship between premises and
hypotheses. Specifically, the model processes the passage text and assigns an
integer value from 1 to J representing the confidentiality level, we set J =5 to
reflect a five-point Likert scale. In educational contexts, this allows us to distin-
guish between public content intended for students (levels 1-2) and specialized
or sensitive materials aimed at teachers or domain experts (levels 4-5).

RAG Setup A key design choice is the selection of the textual encoder for the
retrieval stage. Specifically, the selection process involved testing several state-
of-the-art encoders, and Nomic [12] emerged as the most effective model for
the financial domain. We set n, = 10 for persona generation, n, = 3 for query
decomposition (each input query is expanded into three sub-queries generated
by Qwen3), and v = 60 for RRF smoothing. Unless otherwise indicated, we set
the number of retrieved documents to 100.

Metrics For the performance analysis, we adopted a set of classical IR and more
recent dimensions related to confidentiality. The former include Precision@k
(P@k), which measures the proportion of relevant documents among the top &
results; MAP@k, which computes the mean of the cumulative precision values
at the ranks where relevant documents occur; and nDCG@k, which assesses
the overall ranking quality by penalizing relevant documents retrieved at lower
ranks; Hit@Qk, which represents the probability of finding at least one relevant
document within the top k positions.

4 https://huggingface.co/facebook /bart-large-mnli
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Metric Dense CE LF RRF

pail 0.2169 0.2884 0.2991 0.2169
MAP@10 0.2730 0.3397 0.3506  0.2730
NDCG@10 0.2250 0.2808 0.2929 0.2250
HIT@10 0.4498 0.5878  0.5247  0.4498

Table 1: RQ1: Performance comparison among Dense, CE, LF, and RRF. Best
results are highlighted in bold.

Metric a=010 a=030 a=050 «a=070 «a=0.90

pa1l 0.2918 0.2924 0.2931 0.2951 0.2991
MAP@Q@10 0.3448 0.3452 0.3457 0.3471 0.3506
NDCG@10 0.2888 0.2891 0.2896 0.2905 0.2929
HIT@10 0.5200 0.5202 0.5205 0.5213 0.5247

Table 2: RQ1: Ablation study on Linear Fusion across different o values. Best
results are highlighted in bold.

3.2 RQ1 - Fusion Strategies Effectiveness

The first Research Question investigates the impact of different fusion strategies
within the RetrievEM framework. The underlying intuition behind this anal-
ysis is that heterogeneous signals, such as the scores produced by the dense
retriever and the cross-encoder, may be complementary: the former provides cov-
erage, while the latter offers higher ranking precision. The question, therefore,
is whether a weighted combination of these signals can overcome the limitations
of the individual models, and to what extent simpler methods (e.g., RRF) can
compete with more sophisticated approaches.

The analysis begins by comparing the proposed technique against the main
baselines. As shown in Table 1, LF outperforms both Dense and CE on P@1,
MAP@10, and nDCG@10. In particular, P@Q] increases from 0.2884 (CE) to
0.2991 and MAP@10 from 0.3397 to 0.3506, highlighting the benefits of a weighted
combination: the retriever contributes coverage, while the re-ranker improves
precision in the top ranks. For HIT@10, CE achieves the highest value (0.5878),
while fusion remains competitive (0.5247), suggesting that the method prioritizes
quality in the top positions over broad coverage.

A relevant comparison is with RRF, a simple but widely adopted method for
combining heterogeneous models. In our setting, RRF exhibits clearly inferior
performance compared to LF across all metrics, essentially matching the dense
retriever. This behavior suggests that the reranker’s contribution is diluted in
the RRF combination, likely because the dense retriever dominates the ranking.
These findings are consistent with previous observations that RRF tends to be
competitive only when sources provide partially complementary signals.
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The performance of LF in Table 1 refers to the configuration with the fusion
weight yielding best results, according to an ablation study conducted on a
validation set by varying «. Table 2 shows the effect of this study on the test set,
with a clear monotonic improvement across all metrics as the contribution of the
re-ranker increases and a = 0.90 consistently emerging as the best configuration.

3.3 RQ2 - Confidentiality Preservation

The second RQ examines the effectiveness of the Backfill mechanism in mitigat-
ing key structural limitations that arise in retrieval scenarios subject to confi-
dentiality constraints, without excessively compromising performance.

Two main factors motivate this analysis: (i) Reduction of the accessible cat-
alog — when strict access policies are enforced, the set of documents actually
available to each user is drastically reduced. This increases the risk of failing to
retrieve relevant content simply because it is not authorized. (ii) Selection bias
introduced by top-k — in RAG systems, the choice of the parameter & (i.e., the
number of documents retrieved in the initial stage) determines which candidates
are passed to the reranker. A fixed k value introduces a structural bias: if rele-
vant documents do not appear in the initial top-k, they will never be considered,
even if potentially important.

The Backfill mechanism directly addresses these two issues. After apply-
ing confidentiality filtering (which ensures full compliance with access policies
L > A), Backfill increases the search depth by exploring beyond the initial top-
k results and re-ranking these additional candidates using the reranker. This
deeper exploration reaches documents that may be difficult to surface directly
through the user’s query, but which are both relevant and authorized as well.

Figure 2 clearly illustrates the impact of this strategy on retrieval metrics.
The use of Backfill leads to an increase in HIT@10, indicating that a larger num-
ber of queries are able to retrieve at least one relevant document. At the same
time, an improvement in NDCG@10 can be observed, as relevant documents are
promoted to higher and therefore more visible positions in the final ranking.
Conversely, P@Q10 tends to decrease, since deeper exploration also introduces
fewer relevant documents, reducing the average number of relevant results per
query. Overall, these findings show that Backfill introduces a controlled trade-
off between precision and coverage: by extending the search depth, the system
can satisfy more queries and improve the visibility of relevant documents, at the
cost of a moderate reduction in precision. This behavior reflects realistic edu-
cational scenarios in which confidentiality constraints significantly restrict the
space of accessible documents, and deeper search becomes essential to preserve
the pedagogical utility of the system.

4 Conclusions and Future Work

This work introduced RetrievEM, a Confidentiality-Aware RAG framework de-
signed for educational contexts and validated on the BEIR/FiQA benchmark. The
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Fig.2: RQ2. Change in performance after applying the Backfill mechanism with
respect to the Pre-filtering step (corresponding to LF with o = 0.9).

system demonstrates that it is possible to combine retrieval effectiveness with
strict access-control constraints, providing accurate and pedagogically useful re-
sponses while preserving confidentiality.

In terms of effectiveness, fusion strategies proved superior to individual com-
ponents: Linear Fusion with e = 0.9 achieved the best performance, outperform-
ing both dense retriever and cross-encoder taken individually, and surpassing
that achieved by reciprocal rank fusion. On the confidentiality side, enforcing
access policies inevitably reduces the pool of accessible documents while ampli-
fying the bias introduced by top-k retrieval. To mitigate this, we proposed the
Backfill strategy, which extends the search depth beyond the initial top-k results
and re-ranks additional candidates. This approach improves Hit and NDCG, en-
suring higher coverage and better visibility of relevant documents, but it reduces
P@10 due to broader inclusion. In short, Backfill trades precision for coverage,
providing a practical balance between strict access enforcement and utility of
the retrieved results.

The study also highlights several limitations. First, performance depends
heavily on the embedding space, with results and rankings sensitive to the choice
of model. Moreover, gains from reranking and query decomposition are not uni-
form across all queries, exposing variability across queries. Computational costs
also increase substantially when incorporating multiple strategies after the re-
trieval stage, such as fusion-based scoring and the Backfill mechanism.

Looking ahead, future work will focus on adaptive policies that dynamically
select retrieval, fusion, and backfill depth based on query characteristics, devel-
oping cost-aware mechanisms that optimize efficiency. We also plan to extend
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the evaluation to educational datasets with real confidentiality constraints and to
conduct user studies assessing the framework’s pedagogical value and usability.
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